Outline

- FCR-N Market price forecasting
- IEC 104 & REST API for Virtual Power Plants
- Asset capacity forecasting Photovoltaics / Solar Panels
- Asset capacity forecasting Building Automation
- Energy Consumption forecasting
- MLOps for FCR-N market forecasting

Previous work & background

- Previous work:
 - Researched the best model
 - Web UI, REST API & Running on CSC
- Current scope:
 - Increase accuracy
 - Automate ML lifecycle

Aalto University School of Electrical Engineering

Dense vs TFT

- Data sources: Fingrid, Finnish Meteorological Institute, Calendar features
- Dense (Three-layer classic NN) = Old model.
- TFT (Temporal Fusion Transformer) = Current research model

Predictions with TFT and Live forecaste

AE

Ψ

Dense vs TFT

- Error Comparison
- Four metrics
- Three different training periods for TFT
 - 3 Months 3m
 - 6 Months 6m \bullet
 - 1 Year 1yr \bullet
- Similar result for 2020 and 2022
- TFT performs better than existing model

Aalto University

Engineering

School of Electrical

Online - Using Dense NN & running on CSC 3m,6m,1yr – Using TFT on Triton for 3m, 6m and 1yr historical data respectively

Absolute Error

2021 Metrics

Mean Absolute Percentage Error

3

IEC 104 & REST API for Virtual Power Plants

IEC 104 & REST API for VPP

Background

- VPP:
 - Manage energy resources that are not co-located (DER)
 - Lack of research: Cloudification & multi-tenancy
 - Need: Interoperability via cloud computing
- IEC 60870-5-104 (IEC 104)
 - Well-established standard for telecontrol in automation applications
- IEC 104 Role:
 - VPP interoperability & Cloudification.
 - Third-party integration (as SaaS clients)
 - Internet of Things-enabled Distributed Energy Resources
 - Electricity market information systems

- Integration with Siemens Virtual Power Plant (VPP).
- Used for: Data imports from VPP and perform forecasts on the data.
- Publication:

https://ieeexplore.ieee.org/document/9640

200

IEC 104 & REST API for VPP

Architecture

ool of Electrical

Engineering

- Smart grid: VPP interfacing via IEC-104
- Software as a Service SaaS architecture
 - IEC 60870-5-104 / 104
 - REST (Representational State
 - Transfer)
 - APIs (Application Programming Interfaces).
 - Multitenancy (For scaling)
 - SaaS clients: Connected to assets like photovoltaic panels / EV charging stations via the REST API

IEC 104 & REST API for VPP

Multitenant Architecture Implementation

- Multiple SaaS (REST API) clients
- Multiple IEC 104
 Clients
- Single REST API
 server
- Both monitor and control signal communication
- Security: Request authentication

Asset capacity forecasting Photovoltaics / Solar Panels

Asset capacity forecasting : PV

Sello usecase : Introduction

- Penetration of Photovoltaic (PV) power generation in PFR (Primary Frequency Reserves).
- For VPP, asset capacity forecast is useful due to the minimum capacity of one bid in the PFR markets.
- PV data is collected from Siemens VPP for forecasting.
- Dense model (Three-layered classical neural network).
- Data sources: Finnish Meteorological Institute, Calendar features
- Publication: https://www.mdpi.com/1996-1073/14/5/1242

A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves

by 🛢 Rakshith Subramanya ^{1.*} 🗢 [©], 😢 Matti Yli-Ojanperä ¹ ⊠, 😢 Seppo Sierla ¹ ⊠ [©], 😢 Taneli Hölttä ¹ ⊠, 😵 Jori Valtakari ² ⊠ and [®] Valeriy Vyatkin ^{1,3,4} ⊠

🔲 Rakshith Subramanya 🖓 🐸 😌 🧑 Mairi Yii Ojanpera 🗥 🖓 Seppo Swita 🐂 🖓 💭 tanan n Jori Vatakari 2 🖂 and 🕄 Valerly Vyatkin 1.3.4 😔

Asset capacity forecasting : PV

Data used for prediction

Sello usecase

Asset capacity forecasting Building Automation

Asset capacity forecasting : Building Automation

Sello usecase – Building Automation

- Forecasting different asset capacities:
 - Building automation
 - Diesel generation
 - Battery storage
- Asset data is collected from Siemens VPP for forecasting.
- Data Sources:
 - BuildingAutomation data + Calendar features + Fingrid features (FCR) + Mall operating hours.
 - Researched with previous PV data for increasing accuracy.
- Auto Machine Learning (AutoML) is used for determining the optimal learning parameters.
- Types of networks used:
 - Three-layered classical neural network Dense
 Temporal Fusion Transformer TFT
 - Convolutional Neural Networks CNN

Asset capacity forecasting

Sello usecase – The data

../data/data3/buildingautomation/BA0521_0721_data3_1hr.csv

Asset capacity forecasting

Sello usecase – Prediction results

Asset capacity forecasting

Sello usecase – Prediction results

Prediction with CNN Model

Energy Consumption forecasting

Lempäälän Lämpö energy consumption forecasting Background

- Prediction of:
 - Solar production
 - 2 Solar power plants
 - District heating consumption
 - Fire station, school, sports hall, service building
 - Electricity consumption
 - Gas consumption
 - Goal was to use AI under the 'Leading energy community' program.
 - Main tasks:
 - Exploratory data analysis Data Cleaning
 - Fixing: Timestamp, double entries, missing series data, data format.
 - Forecasting using the Dense model (Three-layered classical neural network).

Lempäälän Lämpö energy consumption forecasting

Solar production forecasting

Lempäälän Lämpö energy consumption forecasting

Forecasting District heating consumption

Data Sources : Calendar features, Solar data (From LL), Finnish Meteorological Institute

Aalto University School of Electrical Engineering

Lempäälän Lämpö energy consumption forecasting

Forecasting electricity and gas consumption

MLOps for FCR-N market forecasting

MLOps for FCR-N market forecasting Background

- Core ML (e.g., in FCR-N) is only a small part
- ML applications are more experimental in nature
 - Tracking, debugging
- Usually works with other software systems
 - Web applications, Mobile API
- Continuous software engineering practices
- Production: Accessibility, Scalability, Security

1. Reproducible

Must be able to reproduce the predictions with the same model & data to within few % error

3. Collaborative Must be able to do asynchronous collaboration

Real-world application with ML code

2. Accountable

Must be able to trace back from model in production to its provenance

4. Continuous Must be able to deploy automatically & monitor statistically

MLOps for FCR-N market forecasting MLOps pipeline

CONFIDENTIAL

MLOps for FCR-N market forecasting

Ingestion, Preparation

Jenkins					Pipelines	Administratio	n	Logout
omlops_1	tft_gitlab វ	* 🌣				Activity	Branches	Pull Requests
STATUS	RUN	COMMIT	BRANCH	MESSAGE	I	DURATION	COMPLETED	
	80	1493852	master	Replayed #79	:	2d 22h 39m 8s	2 minutes ago	5
0	79	1493852	master	Update readme.md	:	23m 31s	8 days ago	5
1	78	a0dffba	master	sql changes	8	3m 2s	a month ago	5
0	77	f054e4a	master	TFT database changes	8	3m 49s	a month ago	5
0	76	cb0b234	master	Updated jenkinsfile to activate venv	:	15m 1s	a month ago	5
\bigotimes	75	55e9a02	master	Major revisions to testcase files	:	l1s	a month ago	5
	74	69e09c9	master	updated Jenkinsfile params	:	17m 25s	a month ago	5
0	73	f3300e9	master	updated Jenkinsfile params	:	27s	a month ago	5
\bigotimes	72	b9d019a	master	updated Jenkinsfile params	:	ōs	a month ago	5
\bigotimes	71	c6302b7	master	updated Jenkinsfile params	:	ōs	a month ago	5
\bigotimes	70	33168b4	master	updated Jenkinsfile params	:	ōs	a month ago	5
8	69	4a58695	master	updated Jenkinsfile params	:	ōs	a month ago	5

Aalto University School of Electrical Engineering INGESTION PREPARATION BUILD MODEL DEPLOYMENT MONITOR

MLOps for FCR-N market forecasting

(

Build model, Deploy

nents +	<	From	n CSC	VM 🗍										
Experiments														
local 🖉	Ū [^]	Experiment ID: 1												
SC VM	Ū													
		► Notes 🗹												
	}	Showing 8 matching runs												
		C+Refresh Compa			Delete	Download	ICSVI J	Start Time						
			terrestr		Delete	Download	V 20 V	Start Time						
		i	⊞	鍃Columns	Only show	differences (0 0	metrics.rmse < 1			Search	- Filter	Clear	
												I second as		
			*									Metrics >		
			1 Start	Time	Duration	Run Name	User	Source	Version	Models		best_score	restored_epoc	:h
		U	0	2 days ago	3.3min	-	jenkins	<pre>tft_forecast</pre>	149385	S pytorch		1.564	0	
			0	7 days ago	7.8min		jenkins	<pre>tft_forecast</pre>	149385	eg pytorch		1.774	3	4
			© .	25 days ago	4.3min	-	jenkins	ttt_forecast	a0dffb	eg pytorch		1.964	1	-
			0	I month ago	7.1min	-	jenkins	ttt_forecast	t054e4	s pytorch		1.707	3	
			0	1 month ago	7. Imin		Jenkins Pakebith Su	ttt_forecast	6000025	e pytorch		1.059	5	,
			© @	1 month ago	2.45		Rakshith Su		69e09c					
			0	1 month ago	9.0min		ienkins	□ tft_forecast	69e09c	pytorch		1 847	4	
			Ū	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Carrier		,	Load mor	re	8 p) (6.64				
			8 8 0	1 month ago 1 month ago 1 month ago	0.8s 2.4s 9.0min	-	Rakshith Su Rakshith Su jenkins	tft_forecast tft_forecast tft_forecast tft_forecast Load more	69e09c 69e09c 69e09c	- - B pytorch		- - 1.847	- 4	

Aalto University School of Electrical Engineering

MLOps for FCR-N market forecasting

Monitor

alto University School of Elect

Engineering

A! Predictricity	Home	University Team	Other AI solutions	Partner companies	Electricity markets	Flexible Assets	Benefits
FCR-N Market price forecaster aka Ancillary predictor							
5 Every day, this app collects data from the Web, trains machine learning model, and predicts Finnish ancillary market for tomorrow. Tomorrow	s results should b	e ready by 2 p.m. Finnish ti	me.				
4							
C (MWW							
2 (C							
1							
0							
Using current market	t timezone (adde	d +1 for daylight saving ti	me): UTC+2				
Yesterday	~ 0	Get data					
This programme is funded by Business Finland, Aalto University, and companies participating	with their own p	rojects. We also wish to	acknowledge CSC - IT Ce	nter for Science, Finland, f	for computational resourc	es.	
							_
INGESTION PREPARATI	ON	BUILD MODE	L DEPLOYMEN	NT MONITOR			

Thank you

